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Manycore architectures

Phenom X4
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Nehalem
GT200



Manycore architectures

• Conventional (few cores)

– Cache and out of order execution 

– Backwards compatibility (support for 8086)

– Frequency limit reached – 3.6 GHz

• Manycore (hundreds of cores)
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• Manycore (hundreds of cores)

– More transistors dedicated to compute

– No need of backwards compatibility

• Graphics APIs only (OpenGL, DirectX)

– Wider memory bandwidth



Manycore architectures

• Core count increase at 

higher pace than CPUs

– 512 for nVIDIA – Fermi

– 1600 for ATI – HD 5870

• Memory bandwidth
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• Memory bandwidth

– 150 GB/s for GPU

– 20 GB/s for CPU

FLOP = floating point operation
(source=nVIDIA)



Manycore architectures

• Until mid 2000, very limited programmability

– Need for in depth knowledge of Graphics

– Few standard programming features (no functions, no stack)

• More tools arise – towards a standard

– BrookGPU (2004), CUDA (2007)
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– BrookGPU (2004), CUDA (2007)

– OpenCL – standard (2009)

• Big players

– nVIDIA

– AMD (ATI)

– Intel (announced)



The Problem – The Project
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The Problem

• Calibration with Monte Carlo Simulations

– Very complex model (no closed form or Fourier formulas)

– Very compute intensive calibration

– Updates needed as often as possible

• First shot of the algorithm
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• First shot of the algorithm

– Conventional CPU clusters

– No global optimization (algorithm part of a bigger 

library)

• Computation time : 45 minutes on a 50 cores cluster



Approach

• Think global 

– Optimization is not premature in this case

• Use GPU for as much compute as possible

• Validate precision needs
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• Validate precision needs

– GPUs are most powerful in single precision

– What is the trust of a Monte Carlo result compared to the 

error of single precision

• Make the process transparent to users



How to make it parallel

• Tens of thousands of drawings

– Each are independent by definition (Monte Carlo)

– All paths can fit in GPU memory (for a small set of time steps)

• Big integral for fit

– Split into many buckets

© Altimesh 2009 – all rights reserved© Altimesh 2009 – all rights reserved

– Split into many buckets

– Each bucket computed independently

– For a compute chunk, all data fit in GPU cache

• Global iterative process

– Bootstrap approach -> Sequential algorithm

– Though each unit is compute expensive enough

– Little memory exchange between CPU and GPU



Issues and Pitfall
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Environmental elements

• Project started in 2007

– CUDA in its early stages (few features and samples)

– No double precision available on hardware

– Knowledge in computer graphics and GPU behavior was a plus

• Reference code written in Ada
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• Reference code written in Ada

– No way to have same code for CPU and GPU

– Need to align interleaved Ada code with brand new 

optimized C/CUDA code

• Comma change testing

– Reference run, on a single core, required hours

– Hard to make a one to one correspondence at startup



On Precision

• Double precision

– Could not define whether difference was due to algorithm 

or single precision floating point

– Obtained early access to double precision hardware during 

the project -> most useful
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• Order of operations

– Applying dividends and other log/exp space operations 

required specific care. Precision can be lost because of 

bad instruction order

FPU registers are 80 bits – GPU double precision is 64 bits

Sum (1/N; 1..N)  can be <> 1, for N very large



On Precision

• Intrinsic exp operation

– The IEEE 754 norm is not strict on transcendents

– bias can yield error drifts

nVIDIA provided an alternate unbiased implementation of exp
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• Epsilon and Monte Carlo trust range

– Epsilon = 3.6 E-7 in single precision

– Monte Carlo trust for our amount of paths is orders of 

magnitude wider 

For Monte Carlo, single precision is most often sufficient !



Results
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Validation of the project

Double precision was very useful for algorithmic validation

Single precision was sufficient in terms of accuracy
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Single precision was sufficient in terms of accuracy

Embedded in a network service thus transparent to users



What to compare ?

• Reference implementation is 

– Part of a larger project

– Not prematurely optimized

– Clusterized by default

• We have three/four configurations
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• We have three/four configurations

– Reference implementation – before optimization

– C implementation optimized for CPU

– Single/Double precision optimized for GPU



Results

Reference C Double Single

Time 7h45 45’ 3”35 40”

Speedup 1 10.3 12.6 (wrt C) 68 (wrt C)
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Speedup 1 10.3 12.6 (wrt C) 68 (wrt C)

1 CPU core 1 CPU core + 1 GPU + 1 GPU

Watts 75 75 275 275

Wh ratio ($) 1 10.3 35.3 (wrt Ref) 190 (wrt Ref)



Applicability to other problems
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Memory Bound vs Compute Bound

• Memory bound means that accessing data takes more time 

than actually processing it

• Compute bound means that processing data takes more 

time than accessing it
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• Figure Facts

CPU (core) GPU (GT200) ratio

Memory bandwidth ~20 GB / s ~100 GB / s 5

Time per op (4 bytes) 200 ps 40 ps (w/o cache)

FLOPS ~13 GFLOPS ~760 GFLOPS 60

Time per op 77 ps 1.3 ps



In practice

• Cost of operations

• On CPU

c = a + b : 2 mem reads 1 mem write, 1 FLOP
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– Memory : 600 ps, Compute : 80 ps

• We could do 8 times more operations

• On GPU

– Memory : 120 ps, Compute : 1.3 ps

• We could do 100 times more operations



Other example

• Should we tabulate exp ?

• On CPU

– Memory : 2 operations : 400 ps

– Exp : ~ 40 FLOP : 1600 ps

Compute Bound ! by a factor of 4

CPU : TABULATE
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Compute Bound ! by a factor of 4

• On GPU

– Memory : 2 operations : 80 ps

– Exp : ~ 16 FLOP : 21 ps

Memory Bound ! by a factor of 4

GPU : RECOMPUTE



Some insights

• Problem is linear algebra or similar

– Highly probable that problem is memory bound on both 

architectures

– Speed-up is determined by bandwidth ratio 

• see memory capabilities for CPU (DDR3) and GPU (DDR5)

© Altimesh 2009 – all rights reserved© Altimesh 2009 – all rights reserved

• Problem uses mostly transcendents

– Example : Box-Müller for RNG of a Gaussian number

– Speed-up will be higher than bandwidth ratio

– In ideal cases, can be hundreds



Key elements/figures

CPU GPU

Hundreds cycles – OS kernel

call

Thread 

synchronization
1 cycle – hardware assisted

Automatic

Very little user control

Feeling Lucky ?

Cache handling

Manual cache management

Different cache types 

(RO/RW)
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Feeling Lucky ? (RO/RW)

64 KB per core L1 - Cache size 16-48 KB for 8-32 cores

Several MB L2 - Cache size -

2.6 FLOPs per MEMOPs 30

General, predicted, out of 

order execution
Branching

Limited, can be very

expensive



Take home message

Compute is cheaper than memory access

Think manycore
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Think manycore

Verify needs of precompute


