
© Altimesh 2015 – Super Computing 2015 – all rights reserved

Altimesh Hybridizer™

Embrace Micro-Architecture Changes

Abstract-Out Instruction Set Variety

Achieve State-Of-The-Art Performance



© Altimesh 2015 – Super Computing 2015 – all rights reserved

Finance and Regulation

• Financial institutions are very creative
– Derivative products ecosystem grows constantly

– Some players introduce new product types to leverage corner 
unregulated financial traits [e.g. Subprimes]

• Every big financial event yields new regulations
– More stress scenarios [Too big to fail]

– More complex financial quantitative models [Liquidity]

– Higher number of simulations [unlikely systemic events]

• Quant analysts need to (re-)design quant libraries constantly
– New models need to be developed, tested and integrated in existing 

system

– Performance is getting critical: from thousands to millions of 
simulations – same power envelope ?

– Code optimization gets low priority: following changes implied by 
regulators is already a heavy burden

2



© Altimesh 2015 – Super Computing 2015 – all rights reserved

Processor Ecosystem

• Processors have changed

• Frequency drops, Core count / vector unit explodes
• Most problems get memory bound (flop / memop > 25)
• Multithreading is not the only issue (SIMD/SIMT ratio)

• Keeping-up with technology changes requires significant 
software development effort and training

3

year 2000 2014 2013 2012

processor Pentium 4 Xeon E5-v3 Xeon PHI Kepler

core frequency (GHz) 3,8 2,3 1,24 0,745

vector unit size (DP) 1 4 8 32

pipelines / core 1 2 1 2

contexts 1 2 4 4

core count 1 18 61 15

FMA 1 2 2 2

Peak scalar GFLOPS 3,8 165,6 151,28 22,35

Peak GFLOPS (DP) 3,8 662,4 1210,24 1430,4

SIMD/SIMT ratio 1 4 8 64

Bandwidth (R/W) 4,26 68 352 288

flop / memop 7,14 77,93 27,51 39,73

Bandwidth / core 4,26 3,78 5,77 19,20



© Altimesh 2015 – Super Computing 2015 – all rights reserved

Matrix Multiply

Naive Matrix Multiply
Block-accumulation (better
cache behavior?)

4

Prefer Vendor-Tuned Libraries

Matrix-Multiply sounds simple, however it 
involves advanced features:

• Vector-unit operations

• Non-temporal write

• Several layers of memory prefetching

• Many corner cases for unaligned sizes, 
transposes, etc.

GFLOPS

24,9

MATRIX MULTIPLY (C++ / INTEL 15.0)

Naive



© Altimesh 2015 – Super Computing 2015 – all rights reserved

Matrix Multiply

Naive Matrix Multiply
Block-accumulation (better
cache behavior?)

5

Prefer Vendor-Tuned Libraries

Matrix-Multiply sounds simple, however it 
involves advanced features:

• Vector-unit operations

• Non-temporal write

• Several layers of memory prefetching

• Many corner cases for unaligned sizes, 
transposes, etc.

GFLOPS

24,9

0,84

MATRIX MULTIPLY (C++ / INTEL 15.0)

Naive

Block-ordering



© Altimesh 2015 – Super Computing 2015 – all rights reserved

Matrix Multiply

Naive Matrix Multiply
Block-accumulation (better
cache behavior?)

6

Prefer Vendor-Tuned Libraries

Matrix-Multiply sounds simple, however it 
involves advanced features:

• Vector-unit operations

• Non-temporal write

• Several layers of memory prefetching

• Many corner cases for unaligned sizes, 
transposes, etc.

GFLOPS

24,9
0,84

114

MATRIX MULTIPLY (C++ / INTEL 15.0)

Naive

Block-ordering

MKL DGEMM



© Altimesh 2015 – Super Computing 2015 – all rights reserved

Use Vendor-Tuned Libraries

• « What every programmer should know about memory », by Ulrich Drepper
– It takes a lot to write (close to) optimal code
– Understanding of core components of the system are necessary to get good 

performance (getting a compute-bound implementation of matrix multiply is 
hard)

• Micro-architecture evolve
– AVX means 256 bits operands => new instruction set wrt SSE
– AVX-2 has more instructions => need to redefine some code (see gather 

instruction)
– AVX-512 is totally different, moreover flops/memops ratio evolves => need 

to rewrite

• Vendors provide optimized libraries (Intel MKL)
– Prefer optimized libraries over hand-written versions
– Sometimes better performance writing code to transition from custom code 

to optimized library

• Hybridizer integrates these libraries with Extensibility attributes
– Available through wrapper methods (no overhead)
– No overhead using these libraries
– Same approach to integrate existing in-house developments

7



© Altimesh 2015 – Super Computing 2015 – all rights reserved

Key Changes to Embrace

• Multithread : core count explode, and frequency stalls 
or decrease => not using multithread will lead to 
performance decrease in the future

• Vectorize : vector unit size grows. SIMD/SIMT ratio 
indicates the relative loss when not vectorizing code. 
AVX-512 will double the fall for Intel x86 
architecture.

• Cache-aware : flop/memop increase (> 25). Operations 
need to occur in cache. Large vector operations are 
memory bound and should be replaced by small vector 
operations

8

Hybridizer aims at addressing these
challenges with a unified approach



© Altimesh 2015 – Super Computing 2015 – all rights reserved

• Input

– .Net

– Java

– C/C++ (ongoing developments)

• Environments:

– Windows / Linux

• Generate source code

– CUDA/C for NVIDIA GPU

– C++ for native 
platforms

– Open CL

Hybridizer Solution

[C/C++]

Java
.Net

Hybridizer

CUDA/C
NVIDIA

C++

AVX
Intel / AMD CPU

Xeon PHI
Intel

AVX-512
Intel KNL/Skylake

OpenCL

9

Unified
vectorization

pattern



© Altimesh 2015 – Super Computing 2015 – all rights reserved

Hybridizer Benefits

• Single version of source code
– Express parallelism with a paradigm of choice (ParallelFor / 

iterators / custom indexing type)

– Generates several flavors of source code 

• Execution on a variety of platforms
– Plain C, CUDA

– Vector-units: AVX, AVX2, AVX-512

– External libraries integration (e.g. MKL) and extensibility
(hand-tuned micro-architecture specific codes)

• Debugging / Profiling of output
– Code location is preserved on target platform

– Integration in existing debugging / profiling tools

– Generated source-code is readable for auditing

10



© Altimesh 2015 – Super Computing 2015 – all rights reserved

Integration with Intel Vtune Amplifier

11

Scalar C# source File

AVX2 instructions

Mapped on Intel SVMLStandard System.Math methods



© Altimesh 2015 – Super Computing 2015 – all rights reserved

Benchmark-Level Performances

12
GOptions/s

0,433

0,102

0,402

BLACK-SCHOLES - CLOSED FORM
C++ annotated / Intel Compiler

DotNet

Hybridizer

7% overhead



© Altimesh 2015 – Super Computing 2015 – all rights reserved

Extended features

Virtual Functions

• Interfaces / abstract 
classes and inheritance
is supported

• Underlying implementation
is a function-table

Generics

• Generics get mapped onto 
templates

• C++ template concepts are 
expressed by DotNet/Java 
generics constraints

• Restored performance

13

Object oriented programming
productivity maintained …

… And overhead can be removed



© Altimesh 2015 – Super Computing 2015 – all rights reserved

Financial Model Spot Diffusion

Dot net source code 
Generic parameters for flexibility

C++ source code with annotations 
(two outer loop configurations)

14



© Altimesh 2015 – Super Computing 2015 – all rights reserved

Black-Scholes-Merton Diffusion  

15

Dot Net Hybridizer C++ / Intel
Compiler

Dot Net Hybridizer C++ / Intel
Compiler

Sim outer loop Time outer loop

0,1326
0,7189 0,4105 0,1805

0,7506 0,7837
0,2116

3,300
2,659

0,1826

3,284

4,723

FINANCIAL MODEL SPOT DIFFUSION – GSTEPS/S

16384 simulations (off-cache) 512 simulations (L2-cache)

Memory-bound Coumpute-bound

• Comparing object-oriented code, with generics, processed by Hybridizer

• with hand-written optimized C++ code compiled with Intel Composer 2015



© Altimesh 2015 – Super Computing 2015 – all rights reserved

Black-Scholes-Merton Diffusion  

16

• Hybridizer greatly improves dotnet
performance: 5x to 18x

• Object oriented programming
preserved: single version of 
source code, reduces operational
risk / testing costs.

Dot Net Hybridizer C++ / Intel
Compiler

Dot Net Hybridizer C++ / Intel
Compiler

Sim outer loop Time outer loop

0,1326
0,7189 0,4105 0,1805

0,7506 0,7837
0,2116

3,300
2,659

0,1826

3,284

4,723

FINANCIAL MODEL SPOT DIFFUSION – GSTEPS/S

16384 simulations (off-cache) 512 simulations (L2-cache)

Memory-bound Coumpute-bound
Significant dotnet

performance 
improvement



© Altimesh 2015 – Super Computing 2015 – all rights reserved

• Hybridizer provides benchmark-
level performances (96% of best 
performing off-cache)

Black-Scholes-Merton Diffusion  

17

• Hybridizer greatly improves dotnet
performance: 5x to 18x

• Object oriented programming
preserved: single version of 
source code, reduces operational
risk / testing costs.

Dot Net Hybridizer C++ / Intel
Compiler

Dot Net Hybridizer C++ / Intel
Compiler

Sim outer loop Time outer loop

0,1326
0,7189 0,4105 0,1805

0,7506 0,7837
0,2116

3,300
2,659

0,1826

3,284

4,723

FINANCIAL MODEL SPOT DIFFUSION – GSTEPS/S

16384 simulations (off-cache) 512 simulations (L2-cache)

Memory-bound Coumpute-bound

Small overhead
for off-cache (4%)



© Altimesh 2015 – Super Computing 2015 – all rights reserved

• Hybridizer provides benchmark-
level performances (96% of best 
performing off-cache)

• Loop ordering has little impact 
for Hybridizer version (~4%) yet
large impact for hand-written
implementation (>45%)

Black-Scholes-Merton Diffusion  

18

• Hybridizer greatly improves dotnet
performance: 5x to 18x

• Object oriented programming
preserved: single version of 
source code, reduces operational
risk / testing costs.

NOTE: cache-locality and outer-loop selection has a 10x impact on performance. Writing optimized C++ code requires significant effort and knowledge.

Dot Net Hybridizer C++ / Intel
Compiler

Dot Net Hybridizer C++ / Intel
Compiler

Sim outer loop Time outer loop

0,1326
0,7189 0,4105 0,1805

0,7506 0,7837
0,2116

3,300
2,659

0,1826

3,284

4,723

FINANCIAL MODEL SPOT DIFFUSION – GSTEPS/S

16384 simulations (off-cache) 512 simulations (L2-cache)

Memory-bound Coumpute-bound

Loop ordering has 
little impact on 

Hybridizer version



© Altimesh 2015 – Super Computing 2015 – all rights reserved

Conclusions

• Shortened development cycles

– Single version of source code – with « managed » languages

– Integrates with Debuggers and Profilers

• State-of-the art performances

– Software development flexibility without performance costs

– Close to Benchmark (>90%) for compute and memory bound 
problems

• Embrace micro-architecture changes

– Hybridizer is AVX-512 ready – simply recompile ?

19

http://www.altimesh.com

http://www.altimesh.com/

