
© Altimesh 2014 – all rights reserved

Altimesh Hybridizer™

Enabling Accelerators in .Net and more

© Altimesh 2014 – all rights reserved

WHY THE HYBRIDIZER ?

So many platforms, so few experts…

© Altimesh 2014 – all rights reserved

Short
development

cycles

Performance

Robust
deliveries

Agile Environments (C#, Java) – low performance

Software development teams accommodate
external constraints

© Altimesh 2014 – all rights reserved

Hybridizer

Short
development

cycles

Performance

Robust
deliveries

Agile Environments (C#, Java) – low performance

Software development teams accommodate
external constraints

© Altimesh 2014 – all rights reserved

Why the Hybridizer?

• Develop in a managed environment (C#/Java)

– Fast developments (fast compile time, edit and continue…)

– Testing and refactoring ecosystem

– Glitch-safe memory management

– Embrace Change

• Benefit from manycore architectures

– With single version of the source code

– Obtain first grade performances (use >80% of peak)

– Fine tune optimizations with debugger/profiler integration

– Variety of execution platforms

– Change execution target without rewriting code

HIGHER PRODUCTIVITY REDUCE TCO OF APPLICATION DEVELOPMENT

MORE EFFICIENT HARDWARE REDUCE TCO OF DATA CENTERS

IT spending : approx 30% in hardware and approx 20% in application development (Source : Gartner)

© Altimesh 2014 – all rights reserved

What the Hybridizer is not

• Hybridizer is not a magic wand: some hints have to be
given

– Memory management is performed either in a naïve way, or
needs to be done by hand

– Memory level usages need to be defined

– Some execution behaviors cannot be guessed

• Work distribution needs to be explicit

– Loop parallelization is not automatic

– Concurrency needs to be handled by hand

– Code patterns need to be changed from sequential to
parallel

© Altimesh 2014 – all rights reserved

What the Hybridizer does

• Generates source code from binaries

– Input is dot net binary (C#, VB.Net, Managed C++, other
MSIL languages, Java)

– Output is source code that can be used in various
environments (plain C/C++ projects, CUDA projects,
Windows/Linux, DotNet / Java runtimes)

• Supports the following language constructs

– Virtual functions, generic types

– Use of external libraries with seamless integration (e.g.
CUBLAS, CURAND for CUDA environment) – user-extensible

– Perform debugging within original source code – say C#.
(this feature needs pdb)

© Altimesh 2014 – all rights reserved

What the Hybridizer does

Hybridizer

.Net binaries (from C#,
F#, VB.Net, binary MSIL)

External libraries
(e.g. cuBLAS,
cuRAND, cuFFT)

Customizations /
Optimizations

CUDA
Source code

Debug information

AVX
Source code

Debug information

© Altimesh 2014 – all rights reserved

Software Stack

LinuxWindows

C# F# VB.Net Java*.Net
CUDA

Libraries

cuBLAS
cuFFT
…

CPU
Libraries

MKL
IPP
…

CPU/AVX source code CUDA source code

DLL | SO DLL | SO

LinuxWindows

© Altimesh 2014 – all rights reserved

HYBRIDIZER IN ACTION

Flexibility of managed environments,

80%+ usage of hardware

© Altimesh 2014 – all rights reserved

Basic features

• CUDA-style work distribution

• Seamless integration (attribute-based)

• Extensibility:

– Usage of existing functions (erfc, hand-written, …)

– Usage of external libraries (cuBLAS, cuRand, …)

– Printf available using Console.Out / System.out

– System.Math maps to <cmath> functions

• Customizable memory management

– Zero copy arrays

– Resident array (single copy for multiple kernel calls)

© Altimesh 2014 – all rights reserved

Performances
bandwidth &

double precision

Compute GCFLOPS usage GFLOPS usage

whetstone 541 92% 43.2 87%

peak 587 - 49.6 -

Memory GB/s usage GB/s usage

stream 162 78% 20.4 80%

peak 208 - 25.6 -

CORE i7-3610 QM (HT activated) @ 2.3 GHz
TurboBoost @ 3.1 GHz (observed using monitor)
AVX - OpenMP with 8 threads (4 cores)

1GB/s = 1e9bytes /s here – MEASURES ON K20C – ECC OFF – CUDA 5.0

NOTE : FMA IS COUNTED AS 1 FLOP HENCE REDUCING PEAK TO HALF
1 CFLOP = 1e9 FMA DP – MEASURES ON K20C

NOTE : Whetstone is our internal naive reproduction of the basic Whetstone test operating on doubles

KEPLER – K20C i7-3610 QM - AVX

© Altimesh 2014 – all rights reserved

Virtual
Functions

public interface ISimple

{

int f();

}

public class Answer : ISimple

{

[Kernel]

public int f()

{

return 42 ;

}

}

public class Other : ISimple

{

[Kernel]

public int f()

{

return 12;

}

}

Support for Virtual
functions

Function overriding :
using inheritance

Use of Interfaces
(single or multiple
interfaces on classes
or structs)

Native integration: no
dedicated code needed.

© Altimesh 2014 – all rights reserved

Performances
virtual

functions

Expm1² GFLOPS GCFLOPS usage

Local 975 538 92%

Dispatch 478 263 45%

peak 1174 587 -

NOTE : FMA IS COUNTED AS 1 FLOP HENCE REDUCING PEAK TO HALF
1 GCFLOP = 1e9 FMA DP – MEASURES ON K20C

KEPLER – K20C

²: EXPM1 IS A TAYLOR EXPANSION OF EXP(X)-1: (1 ADDITION, 13 FUSED MULTIPLY ADD, 2 MULTIPLY)

Virtual functions suffer significant performance penalty

© Altimesh 2014 – all rights reserved

Improve
performances
with Generics

Generics can be
converted to Templates

Generic constraints
lead to usage of
template functions (no
virtual call)

Performances are very
close to performance
obtained with local
functions (no
inheritance/interface)

[HybridTemplateConcept]
public interface IMyArray {

double this[int index] { get; set; }
}

[HybridRegisterTemplate(Specialize=typeof(MyAlgorithm<MyArray>))]
public struct MyArray : IMyArray
{

double[] _data;
[Kernel] public double this[int index] {

get { return _data[index]; }
set { _data[index] = value; }

}
}

public class MyAlgorithm<T> where T : struct, IMyArray
{

T a, b;
[Kernel] public void Add(int n) {

for (int k = threadIdx.x + blockDim.x * blockIdx.x;
k < n; k += blockDim.x * gridDim.x)
a[k] += b[k];

}
}

© Altimesh 2014 – all rights reserved

Performances
generics

Expm1² GFLOPS GCFLOPS usage

Local 975 538 92%

Dispatch 478 263 45%

Generics 985 544 93%

peak 1174 587 -

NOTE : FMA IS COUNTED AS 1 FLOP HENCE REDUCING PEAK TO HALF
1 GCFLOP = 1e9 FMA DP – MEASURES ON K20C

KEPLER – K20C

²: EXPM1 IS A TAYLOR EXPANSION OF EXP(X)-1: (1 ADDITION, 13 FUSED MULTIPLY ADD, 2 MULTIPLY)

Mapping generics to templates restores performances

© Altimesh 2014 – all rights reserved

Performances
single precision

Expm1²
benchmark

GCFLOPS Usage GCFLOPS usage

Local 953.6 - 1234 61% - 80% 450.8 - 660.0 65% - 95%

Dispatch 392.3 - 632.7 25% - 41% 171.0 - 343.2 25% - 49%

Template 958.1 - 1069 62% - 69% 440.3 - 539.3 63% - 78%

peak 1545 - 694.4 -

NOTE : FMA IS COUNTED AS 1 FLOP HENCE REDUCING PEAK TO HALF : 1 GCFLOP = 1e9 FMA SP

KEPLER – GTX 680 MAXWELL – GTX 750Ti
1536 cores @ 1006 GHz = 1545 GCFLOPS 640 cores @ 1.085 GHz = 694.4 GCFLOPS

²: EXPM1 IS A TAYLOR EXPANSION OF EXP(X)-1: (1 ADDITION, 13 FUSED MULTIPLY ADD, 2 MULTIPLY)

without - with
vectorization

without - with
vectorization

© Altimesh 2014 – all rights reserved

INTEGRATION WITH VISUAL STUDIO

Developers perspective

© Altimesh 2014 – all rights reserved

Debugging session using
NSIGHT for Visual Studio [2010]

Breakpoint
is set and
hit in C#
code

Values can
be explored
using Watch

Execution
is on GPU

© Altimesh 2014 – all rights reserved

Profiling session using
NSIGHT for Visual Studio [2010]

Compilation with line-info allows dot net source-level
profiling (also in release mode)

© Altimesh 2014 – all rights reserved

Profiling session using
VTune Amplifier for Visual Studio [2010]

See line association between original sequential C# code and vectorized x86/AVX assembly instructions

© Altimesh 2014 – all rights reserved

Usages – runtimes – execution environments

Generated From
Target

Use From Run on

© Altimesh 2014 – all rights reserved

“We have been using the Hybridizer for more than a year now

with very satisfactory results. With no prior knowledge of

GPU programming, we have been able to achieve significant

speedups in a large scale application with unexcessive

effort. Hybridizer enabled rapid integration of GPU within

our development environment, with limited impact on a team

of hundred programmers. It took nine months to a handful of

developers to go from early testing to production on our

first perimeter, and six more months to cover some of our

most compute intensive calculations.”

Régis FRICKER - GPU project leader at Société Générale Investment Banking

© Altimesh 2014 – all rights reserved

THANK YOU

Florent.Duguet@altimesh.com

Guillaume.de-Roujoux@altimesh.com

mailto:Florent.Duguet@altimesh.com
mailto:Guillaume.de-Roujoux@altimesh.com

